Exploring Ventilation Efficiency in Poultry Buildings: The Validation of Computational Fluid Dynamics (CFD) in a Cross-Mechanically Ventilated Broiler Farm
نویسندگان
چکیده
Broiler production in modern poultry farms commonly uses mechanical ventilation systems. This mechanical ventilation requires an amount of electric energy and a high level of investment in technology. Nevertheless, broiler production is affected by periodic problems of mortality because of thermal stress, thus being crucial to explore the ventilation efficiency. In this article, we analyze a cross-mechanical ventilation system focusing on air velocity distribution. In this way, two methodologies were used to explore indoor environment in livestock buildings: Computational Fluid Dynamics (CFD) simulations and direct measurements for verification and validation (V&V) of CFD. In this study, a validation model using a Generalized Linear Model (GLM) was conducted to compare these methodologies. The results showed that both methodologies were similar in results: the average of air velocities values were 0.60 ± 0.56 m s for CFD and 0.64 ± 0.54 m s for direct measurements. In conclusion, the air velocity was not affected OPEN ACCESS Energies 2013, 6 2606 by the methodology (CFD or direct measurements), and the CFD simulations were therefore validated to analyze indoor environment of poultry farms and its operations. A better knowledge of the indoor environment may contribute to reduce the demand of electric energy, increasing benefits and improving the thermal comfort of broilers.
منابع مشابه
Evaluation of CFD Accuracy for the Ventilation Study of a Naturally Ventilated Broiler House
Using the CFD model, a new ventilation system design will be found later taking into consideration the ventilation efficiency such as uniformity, stability, and suitability of environmental factors in a naturally ventilated broiler house. Because conducting a field experiment for the ventilation study presented so many difficulties, a reliable 3-dimentional computational fluid dynamics (CFD) mo...
متن کاملMultisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms
The rearing of poultry for meat production (broilers) is an agricultural food industry with high relevance to the economy and development of some countries. Periodic episodes of extreme climatic conditions during the summer season can cause high mortality among birds, resulting in economic losses. In this context, ventilation systems within poultry houses play a critical role to ensure appropri...
متن کاملMeasurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House
A building needs to be designed for the whole period of its useful life according to its requirements. However, future climate predictions involve some uncertainty. Thus, several sustainable strategies of adaptation need to be incorporated after the initial design. In this sense, tunnel ventilation in broiler houses provides high air velocity values (2–3 m·s−1) at animal level to diminish their...
متن کاملComputational fluid dynamics simulations for investigation of parameters affecting goaf gas distribution
It is necessary to obtain a fundamental understanding of the goaf gas flow patterns in longwall mine in order to develop optimum goaf gas drainage and spontaneous combustion (sponcom) management strategies. The best ventilation layout for a longwall underground mine should assist in goaf gas drainage and further reduce the risk of sponcom in the goaf. Further, in the longwall panel, regulators ...
متن کاملInvestigation of handmade ferrofluids' motion in a ventilated cavity using computational fluid dynamics
In this research, some more applicable ferrofluids are produced and their mechanical specifications are measured, experimentally. Also, their treatments in the ventilated cavity geometry are assessed numerically. The magnetite nanoparticles are produced by a chemical combination of Fe2+ and Fe3+ with NH3. In order to solve the nanoparticles in the new mediums, a...
متن کامل